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Preface� The year ���� was the centenary of Ramanujan�s birth� He died in
���	� Had he not died so young
 his presence in modern mathematics might be
more immediately felt� Had he lived to have access to powerful algebraic manip�
ulation software
 such as macsyma 
 who knows how much more spectacular
his already astonishing career might have been�

This article will follow up one small thread of Ramanujan�s work which has
found a modern computational context
 namely
 one of his approaches to ap�
proximating �� Our experience has been that as we have come to understand
these pieces of Ramanujan�s work
 as they have become mathematically demys�
ti�ed
 and as we have come to realize the intrinsic complexity of these results
 we
have come to realize how truly singular his abilities were� This article attempts
to present a considerable amount of material and
 of necessity
 little is presented
in detail� We have
 however
 given much more detail than Ramanujan provided�
Our intention is that the circle of ideas will become apparent and that the �ner
points may be pursued through the indicated references�

� Introduction�

There is a close and beautiful connection between the transformation theory for
elliptic integrals and the very rapid approximation of �� This connection was
�rst made explicit by Ramanujan in his ���
 paper �Modular Equations and
Approximations to ������� We might emphasize that Algorithms � and � are
not to be found in Ramanujan�s work
 indeed no recursive approximation of �
is considered
 but as we shall see they are intimately related to his analysis�
Three central examples are�

�
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�One hundred billion digits ����

Algorithm �� Let s� �� ��
p
�� �� and �� �� ���� Let

sn�� ��
��

�z � x�z � ���sn
�

where
x �� ��sn � � y �� �x� ��� � �

and

z ��

�
�

�
x
�
y �

p
y� � 
x�

�����
�

Let

�n�� �� s�n�n � �n
�
s�n � �

�
�
p
sn�s�n � �sn � ��

�
�

Then

	 � �n � �

�
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and �n converges to ��� quintically �that is
 with order �ve��
Each additional term in Sum � adds roughly eight digits
 each additional

iteration of Algorithm � quadruples the number of correct digits
 while each
additional iteration of Algorithm � quintuples the number of correct digits�
Thus a mere thirteen iterations of Algorithm � provide in excess of one billion
decimal digits of �� In general
 for us
 pth�order convergence of a sequence f�n�
to � means that �n tends to � and that

j�n�� � �j � Cj�n � �jp
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for some constant C � 	� Algorithm � is arguably the most e�cient algorithm
currently known for the extended precision calculation of �� While the rates of
convergence are impressive
 it is the subtle and thoroughly nontransparent na�
ture of these results and the beauty of the underlying mathematics that intrigue
us most�

Watson����
 commenting on certain formulae of Ramanujan
 talks of

a thrill which is indistinguishable from the thrill which I feel when I
enter the Sagrestia Nuovo of the Capella Medici and see before me
the austere beauty of the four statues representing �Day�� �Night��
�Evening�� and �Dawn� which Michelangelo has set over the tomb
of Giuliano de�Medici and Lorenzo de�Medici�

Sum � is directly due to Ramanujan and appears in ����� It rests on a
modular identity of order �� and
 like much of Ramanujan�s work
 appears
without proof and with only scanty motivation� The �rst derivation we know of
appears in ����� Algorithms � and � are based on modular identities of orders

 and � respectively� The underlying quintic modular identity in Algorithm �
�the relation for sn� is also due to Ramanujan
 though the �rst proof is due to
Berndt and appears in ����

One intention in writing this article is to explain the genesis of Sum � and
of Algorithms � and �� It is not possible to give a short self�contained account
without assuming an unusual degree of familiarity with modular function theory�
Also
 parts of the derivation involve considerable algebraic calculation and may
most easily be done with the aid of a symbolic manipulation package �mac�
syma� maple� reduce� etc�� � We hope however to give a taste of methods
involved� The full details are available in �����

A second intention is very brie�y to describe the role of these and related
approximations in the recent extended precision calculations of �� In part this
entails a short discussion of the complexity and implementation of such calcu�
lations� This centers on a discussion of multiplication by fast Fourier transform
methods� Of considerable related interest is the fact that these algorithms for
� are provably close to the theoretical optimum�

� The State of Our Current Ignorance�

� is almost certainly the most natural of the transcendental numbers
 arising
as the circumference of a circle of unit diameter� Thus
 it is not surprising that
its properties have been studied for some twenty��ve hundred years� What is
surprising is how little we actually know�

We know that � is irrational
 and have known this since Lambert�s proof
of ���� �see ����� We have known that � is transcendental since Lindemann�s
proof of ���� ����� We also know that � is not a Liouville number� Mahler
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proved this in ����� An irrational number � is Liouville if
 for any n
 there exist
integers p and q so that

	 �

����� � p

q

���� � �

qn
�

Liouville showed these numbers are all transcendental� In fact we know that����� � p

q

���� � �

q���	�
�����

for p� q integral with q su�ciently large� This irrationality estimate
 due to
Chudnovsky and Chudnovsky ���� is certainly not the best possible � It is likely
that �
��� should be replaced by �� 	 for any 	 � 	� Almost all transcendental
numbers satisfy such an inequality� We know a few related results for the rate
of algebraic approximation� The results may be pursued in �
� and �����

We know that e� is transcendental� This follows by noting that e� � �����i
and applying the Gelfond�Schneider theorem �
�� We know that � � log � �p
� log � is transcendental� This result is a consequence of the work that won

Baker a Fields Medal in ���	� And we know a few more than the �rst two
hundred million digits of the decimal expansion for � �Kanada
 see Section ���

The state of our ignorance is more profound� We do not know whether such
basic constants as ��e
 ��e or log � are irrational
 let alone transcendental� The
best we can say about these three particular constants is that they cannot satisfy
any polynomial of degree eight or less with integer coe�cients of average size
less than �	
 ���� This is a consequence of some recent computations employing
the Ferguson�Forcade algorithm ����� We don�t know anything of consequence
about the simple continued fraction of �
 except �numerically� the �rst �� million
terms
 which Gosper computed in ���� using Sum �� Likewise
 apart from
listing the �rst many millions of digits of �
 we know virtually nothing about
the decimal expansion of �� It is possible
 albeit not a good bet
 that all but
�nitely many of the decimal digits of � are in fact 	�s and ��s� Carl Sagan�s recent
novel Contact rests on a similar possibility� Questions concerning the normality
of or the distribution of digits of particular transcendentals such as � appear
completely beyond the scope of current mathematical techniques� The evidence
from analysis of the �rst thirty million digits is that they are very uniformly
distributed ���� The next one hundred and seventy million digits apparently
contain no surprises�

In part we perhaps settle for computing digits of � because there is little else
we can currently do� We would be amiss
 however
 if we did not emphasize that
the extended precision calculation of � has substantial application as a test of
the �global integrity� of a supercomputer� The extended precision calculations
described in Section � uncovered hardware errors which had to be corrected be�
fore those calculations could successfully run� Such calculations
 implemented
as in Section 

 are apparently now used routinely to check supercomputers be�
fore they leave the factory� A large�scale calculation of � is entirely unforgiving
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� it soaks into all parts of the machine and a single bit awry leaves detectable
consequences�

� Matters Computational

I am ashamed to tell you to how many �gures I carried these calcu�
lations� having no other business at the time�

Isaac Newton

Newton�s embarrassment at having computed �� digits
 which he did using
the arcsinlike formula

� �
�
p
�



� �
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�
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�
p
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Z �

�

�

p
x� x�dx�

is indicative both of the spirit in which people calculate digits and the fact that
a surprising number of people have succumbed to the temptation ����

The history of e�orts to determine an accurate value for the constant we
now know as � is almost as long as the history of civilization itself� By �			
B�C� both the Babylonians and the Egyptians knew � to nearly two decimal
places� The Babylonians used
 among others
 the value ���� and the Egyptians
used ������� Not all ancient societies were as accurate
 however � nearly ��		
years later the Hebrews were perhaps still content to use the value � 
 as the
following quote suggests�

Also� he made a molten sea of ten cubits from brim to brim� round
in compass� and �ve cubits the height thereof	 and a line of thirty
cubits did compass it round about�

old Testament� � Kings ����

Despite the long pedigree of the problem
 all nonempirical calculations have
employed
 up to minor variations
 only three techniques�

i� Archimedes Method The �rst technique due to Archimedes of Syra�
cuse ���� ��� B�C�� is
 recursively
 to calculate the length of circumscribed and
inscribed regular � � �n�gons about a circle of diameter �� Call these quantities
an and bn� respectively� Then a� �� �

p
�
 b� �� � and
 as Gauss�s teacher Pfa�

discovered in ��		


an�� ��
�anbn
an � bn

and bn�� ��
p
an��bn�
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Archimedes
 with n � 

 obtained

����� � � � ����

While hardly better than estimates one could get with a ruler
 this is the �rst
method that can be used to generate an arbitrary number of digits
 and to
a nonnumerical mathematician perhaps the problem ends here� Variations on
this theme provided the basis for virtually all calculations of � for the next ��		
years
 culminating with a �
 digit calculation due to Ludolph van Ceulen ���
	 
���	�� This demands polygons with about �	� sides and so is extraordinarily
time consuming�

ii� Calculus Based Methods Calculus provides the basis for the second
technique� The underlying method relies on Gregory�s series of ����

arctanx �

Z x

�

dt

� � t�
� x� x�

�
�
x�

�
� � � � jxj � �

coupled with a formula which allows small x to be used
 like

�
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 arctan

	
�
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This particular formula is due to Machin and was employed by him to compute
�		 digits of � in ��	�� Variations on this second theme are the basis of all the
calculations done until the ���	�s includingWilliam Shanks� monumental hand�
calculation of ��� digits� In the introduction to his book ����
 which presents
this calculation
 Shanks writes�

Towards the close of the year 
��
 the Author �rst formed the de�
sign of rectifying the circle upwards of �

 places of decimals� He
was fully aware at that time� that the accomplishment of his purpose
would add little or nothing to his fame as a Mathematician though
it might as a Computer� nor would it be productive of anything in
the shape of pecuniary recompense�

Shanks actually attempted to hand�calculate �	� digits but a mistake crept
in at the ���th digit� This went unnoticed until ��
�
 when D� Ferguson
 in one
of the last �nondigital� calculations
 computed ��	 digits� Even with machine
calculations mistakes occur
 so most record�setting calculations are done twice
� by su�ciently di�erent methods�

The advent of computers has greatly increased the scope and decreased the
toil of such calculations� Metropolis
 Reitwieser
 and von Neumann computed
and analyzed �	�� digits using Machin�s formula on ENIAC in ��
�� In ����

Dan Shanks andWrench calculated �		
			 digits on an IBM �	�	 ����� By ����

still using Machin�like arctan expansions
 the million digit mark was passed by
Guilloud and Bouyer on a CDC ��		�
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iii� Transformation Methods The third technique
 based on the transfor�
mation theory of elliptic integrals
 provides the algorithms for the most recent
set of computations� The most recent records are due separately to Gosper

Bailey
 and Kanada� Gosper in ���� calculated over �� million digits �in fact
over �� million terms of the continued fraction� using a carefully orchestrated
evaluation of Sum ��

Bailey in January ���� computed over �� million digits using Algorithm � on
a Cray � ���� Kanada
 using a related quadratic algorithm �due in basis to Gauss
and made explicit by Brent ���� and Salamin ����� and using Algorithm � for
a check
 veri�ed ��
��

			 digits� This employed a HITACHI S ��	!�	
 took
roughly eight hours and was completed in September of ����� In January ����
Kanada extended his computation to ��� decimal places of � and the hundred
million digit mark had been passed� The calculation took roughly a day and
a half on a NEC SX� machine� Kanada�s most recent feat �Jan� ����� was
to compute �	�
���
			 digits
 which required only six hours on a new Hitachi
S���	 supercomputer� Within the next few years many hundreds of millions
of digits will no doubt have been similarly computed� Further discussion of the
history of the computation of � may be found in ��� and ����

� Complexity Concerns

One of the interesting morals from theoretical computer science is that many
familiar algorithms are far from optimal� In order to be more precise we intro�
duce the notion of bit complexity� Bit complexity counts the number of single
operations required to complete an algorithm� The single�digit operations are
�
 �
 �� �We could
 if we wished
 introduce storage and logical comparison into
the count� This
 however
 doesn�t a�ect the order of growth of the algorithms
in which we are interested�� This is a good measure of time on a serial machine�
Thus
 addition of two n�digit integers by the usual method has bit complexity
O�n�
 straightforward uniqueness considerations show this to be asymptotically
best possible�

Multiplication is a di�erent story� Usual multiplication of two n�digit inte�
gers has bit complexity O�n�� and no better� However
 it is possible to multiply
two n�digit integers with complexity O�n�logn��log log n��� This result is due
to Sch"onhage and Strassen and dates from ���� ����� It provides the best bound
known for multiplication� No multiplication can have speed better than O�n��
Unhappily
 more exact results aren�t available�

The original observation that a faster than O�n�� multiplication is possible
was due to Karatsuba in ����� Observe that

�a� b�	n��c� d�	n� � ac � ��a� b��c� d�� ac � bd��	n � bd�	�n�

and thus multiplication of two �n�digit integers can be reduced to three multipli�
cations of n�digit integers and a few extra additions� �Of course multiplication
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by �	n is just a shift of the decimal point�� If one now proceeds recursively one
produces a multiplication with bit complexity

O�nlog� ���

Note that log� � � ���� � � � � ��
We denote by M�n� the bit complexity of multiplying two n�digit integers

together by any method that is at least as fast as usual multiplication�
The trick to implementing high precision arithmetic is to get the multipli�

cation right� Division and root extraction piggyback o� multiplication using
Newton�s method� One may use the iteration

xk�� � �xk � x�ky

to compute ��y and the iteration

xk�� �
�

�

	
xk �

y

xk




to compute
p
y� One may also compute ��

p
y from

xk�� �
xk��� yx�k�

�

and so avoid divisions in the computation of
p
y� Not only do these iterations

converge quadratically but
 because Newton�s method is self�correcting �a slight
perturbation in xk does not change the limit�
 it is possible at the kth stage to
work only to precision �k� If division and root extraction are so implemented

they both have bit complexity O�m�n��
 in the sense that n�digit input produces
n�digit accuracy in a time bounded by a constant times the speed of multiplica�
tion� This extends in the obvious way to the solution of any algebraic equation

with the startling conclusion that every algebraic number can be computed �to
n�digit accuracy� with bit complexity O�M�n��� Writing down n digits of

p
�

or �
p
� is �up to a constant� no more complicated than multiplication�

The Sch"onhage�Strassen multiplication is hard to implement� However
 a
multiplication with complexity O��logn����n� based on an ordinary complex
��oating point� fast Fourier transform is reasonably straightforward� This is
Kanada�s approach
 and the recent records all rely critically on some variations
of this technique�

To see how the fast Fourier transform may be used to accelerate multi�
plication
 let x �� �x�� x�� x�� � � � � xn��� and y �� �y�� y�� y�� � � � � yn��� be the
representations of two high�precision numbers in some radix b� The radix b
is usually selected to be some power of � or �	 whose square is less than the
largest integer exactly representable as an ordinary �oating�point number on
the computer being used� Then
 except for releasing each �carry�
 the product
z �� �z�� z�� z�� � � � � zn��� of x and y may be written as
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z� � x�y�

z� � x�y� � x�y�

z� � x�y� � x�y� � x�y�
���

zn�� � x�yn�� � x�yn�� � � � � � xn��y�
���

z�n�� � xn��yn�� � xn��yn��

z�n�� � xn��yn��

z�n�� � 	�

Now consider x and y to have n zeros appended
 so that x
 y
 and z all have
length N � �n� Then a key observation may be made� the product sequence z
is precisely the discrete convolution C�x� y��

zk � Ck�x� y� �
N��X
j��

xjyk�j�

where the subscript k � j is to be interpreted as k � j �N if k � j is negative�
Now a well�known result of Fourier analysis may be applied� Let F �x� denote

the discrete Fourier transform of the sequence x
 and let F���x� denote the
inverse discrete Fourier transform of x�

Fk�x� ��
N��X
j��

xje
���ijk�N

F��
k �x� ��

�

N

N��X
j��

xje
���ijk�N �

Then the �convolution theorem�
 whose proof is a straightforward exercise

states that

F �C�x� y�� � F �x�F �y�

or
 expressed another way


C�x� y� � F���F �x�F �y���

Thus the entire multiplication pyramid z can be obtained by performing two
forward discrete Fourier transforms
 one vector complex multiplication and one
inverse transform
 each of length N � �n� Once the real parts of the resulting
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complex numbers have been rounded to the nearest integer
 the �nal mutipreci�
sion product may be obtained by merely releasing the carries modulo b� This
may be done by starting at the end of the z vector and working backward
 as in
elementary school arithmetic
 or by applying other schemes suitable for vector
processing on more sophisticated computers�

A straightforward implementation of the above procedure would not result
in any computational savings � in fact
 it would be several times more costly
than the usual �schoolperson� scheme� The reason this scheme is used is that
the discrete Fourier transform may be computed much more rapidly using some
variation of the well�known �fast Fourier transform� �FFT� algorithm ����� In
particular
 if N � �m
 then the discrete Fourier transform may be evaluated
in only �m�m arithmetic operations using an FFT� Direct application of the
de�nition of the discrete Fourier transform would require ��m�� �oating�point
arithmetic operations
 even if it is assumed that all powers of e���i�N have been
precalculated�

This is the basic scheme for high�speed multiprecision multiplication� Many
details of e�cient implementations have been omitted� For example
 it is pos�
sible to take advantage of the fact that the input sequences x and y and the
output sequence z are all purely real numbers
 and thereby sharply reduce the
operation count� Also
 it is possible to dispense with complex numbers alto�
gether in favor of performing computations in �elds of integers modulo large
prime numbers� Interested readers are referred to ���
 ���
 ����
 and �����

When the costs of all the constituent operations
 using the best known tech�
niques
 are totalled both Algorithms � and � compute n digits of � with bit
complexity O�M�n� logn�
 and use O�logn� full precision operations�

The bit complexity for Sum �
 or for � using any of the arctan expansions

is between O��logn��M�n�� and O�nM�n�� depending on implementation� In
each case
 one is required to sum O�n� terms of the appropriate series� Done
naively
 one obtains the latter bound� If the calculation is carefully orchestrated
so that the terms are grouped to grow evenly in size �as rational numbers� then
one can achieve the former bound
 but with no corresponding reduction in the
number of operations�

The Archimedean iteration of section � converges like ��
n so in excess of n
iterations are needed for n�digit accuracy
 and the bit complexity is O�nM�n���

Almost any familiar transcendental number such as e
 

 ����
 or Catalan�s
constant �presuming the last three to be nonalgebraic� can be computed with
bit complexity O��logn�M�n�� or O��logn��M�n��� None of these numbers is
known to be computable essentially any faster than this� In light of the previ�
ous observation that algebraic numbers are all computable with bit complexity
O�M�n��
 a proof that � cannot be computed with this speed would imply the
transcendence of �� It would
 in fact
 imply more
 as there are transcendental
numbers which have complexity O�M�n��� An example is 	��	�		�				� � � ��

It is also reasonable to speculate that computing the nth digit of � is not
very much easier than computing all the �rst n digits� We think it very probable
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that computing the nth digit of � cannot be o�n��

� The Miracle of Theta Functions

When I was a student� abelian functions were� as an e�ect of the
Jacobian tradition� considered the uncontested summit of mathemat�
ics� and each of us was ambitious to make progress in this �eld� And
now� The younger generation hardly knows abelian functions�

Felix Klein ��
�

Felix Klein�s lament from a hundred years ago has an uncomfortable time�
lessness to it� Sadly
 it is now possible never to see what Bochner referred to
as �the miracle of the theta functions� in an entire university mathematics pro�
gram� A small piece of this miracle is required here ���
 ����
 ����� First some
standard notations� The complete elliptic integrals of the �rst and second kind

respectively


K�k� ��

Z �

�

�

dtp
�� k� sin� t

�����

and

E�k� ��

Z �

�

�

p
�� k� sin� t dt �����

The second integral arises in the recti�cation of the ellipse
 hence the name
elliptic integrals� The complementary modulus is

k� ��
p
�� k�

and the complementary integrals K � and E� are de�ned by

K ��k� �� K�k�� and E��k� �� E�k���

The �rst remarkable identity is Legendre�s relation namely

E�k�K ��k� � E��k�K�k��K�k�K ��k� �
�

�
�����

�for 	 � k � ��
 which is pivotal in relating these quantities to �� We also need
to de�ne two Jacobian theta functions

#��q� ��
�X

n���
q�n����
� ���
�

and

#��q� ��
�X

n���
qn

�

�����
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These are in fact specializations with �t � 	� of the general theta functions�
More generally

#��t� q� ��
�X

n���
qn

�

e�int �im t � 	�

with similar extensions of #�� In Jacobi�s approach these general theta functions
provide the basic building blocks for elliptic functions
 as functions of t �see ����

������

The complete elliptic integrals and the special theta functions are related as
follows� For jqj � �

K�k� �
�

�
#�
��q� �����

and

E�k� � �k���
�
K�k� � k

dK�k�

dk

�
� �����

where

k �� k�q� �
#�
��q�

#�
��q�

� k� �� k��q� �
#�
���q�
#�
��q�

�����

and
q � e��K

��k
�K�k
� �����

The modular function � is de�ned by

��t� �� ��q� �� k��q� ��

�
#��q�

#��q�

��
� ����	�

where
q �� ei�t�

We wish to make a few comments about modular functions in general before
restricting our attention to the particular modular function �� Modular func�
tions are functions which are meromorphic in H
 the upper half of the complex
plane
 and which are invariant under a group of linear fractional transforma�
tions
 G
 in the sense that

f�g�z�� � f�z� �g � G�

�Additional growth conditions on f at certain points of the associated funda�
mental region �see below� are also demanded�� We restrict G to be a subgroup
of the modular group $ where $ is the set of all transformations w of the form

w�t� �
at� b

ct� d
�

with a� b� c� d integers and ad � bc � �� Observe that $ is a group under com�
position� A fundamental region FG is a set in H with the property that any
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element in H is uniquely the image of some element in FG under the action
of G� Thus the behaviour of a modular function is uniquely determined by its
behaviour on a fundamental region�

Modular functions are
 in a sense
 an extension of elliptic �or doubly periodic�
functions � functions such as sn which are invariant under linear transforma�
tions and which arise naturally in the inversion of elliptic integrals�

The de�nitions we have given above are not complete� We will be more
precise in our discussion of �� One might bear in mind that much of the theory
for � holds in considerably greater generality�

The fundamental region F we associate with � is the set of complex numbers

F �� fim t � 	g 	 �fjre tj � � and

j�t
 �j � �g � fre t � ��g � fj�t� �j � �g��
The ��group �or theta�subgroup� is the set of linear fractional transformations
w satisfying

w�t� ��
at� b

ct� d
�

where a� b� c� d are integers and ad � bc � �
 while in addition a and d are odd
and b and c are even� Thus the corresponding matrices are unimodular� What
makes � a ��modular function is the fact that � is meromorphic in fim t � 	g
and that

��w�t�� �� ��t�

for all w in the ��group
 plus the fact that � tends to a de�nite limit �possi�
bly in�nite� as t tend to a vertex of the fundamental region �one of the three
points �	����� �	� 	�� �i����� Here we only allow convergence from within the
fundamental region�

Now some of the miracle of modular functions can be described� Largely
because every point in the upper half plane is the image of a point in F under
an element of the ��group
 one can deduce that any ��modular function that is
bounded on F is constant� Slightly further into the theory
 but relying on the
above
 is the result that any two modular functions are algebraically related

and resting on this
 but further again into the �eld
 is the following remarkable
result� Recall that q is given by ������

Theorem � Let z be a primitive pth root of unity for p an odd prime� Consider
the pth order modular equation for � as de�ned by

Wp�x� �� �� �x� ����x� ��� � � � �x� �p�� ������

where
�i �� ��ziq��p� i � p

and
�p �� ��qp��
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Then the function Wp is a polynomial in x and � �independent of q�� which
has integer coe�cients and is of degree p� � in both x and ��

The modular equation for � usually has a simpler form in the associated
variables u �� x��� and v �� ����� In this form the �th�order modular equation
is given by

%��u� v� �� u	 � v	 � �u�v��u� � v�� � 
uv��� u�v��� ������

In particular
#��qp�

#��qp�
� v� and

#��q�

#��q�
� u�

are related by an algebraic equation of degree p� ��
The miracle is not over� The pth�order multiplier �for �� is de�ned by

Mp�k�q�� k�q
p�� ��

K�k�qp��

K�k�q��
�

�
#��qp�

#��q�

��
������

and turns out to be a rational function of k�qp� and k�q��
One is now in possession of a pth�order algorithm for K��
 namely� Let

ki �� k�qp
i

�� Then

�K�k��

�
� M��

p �k�� k��M
��
p �k�� k��M

��
p �k�� k�� � � � �

This is an entirely algebraic algorithm� One needs to know the pth�order mod�
ular equation for � to compute ki�� from ki and one needs to know the rational

multiplier Mp� The speed of convergence �O�cp
i

�
 for some c � �� is easily
deduced from ������ and ������

The function ��t� is � � � on F and has a well�de�ned inverse
 ���
 with
branch points only at 	� � and �� This can be used to provide a one line proof
of the �big� Picard theorem that a nonconstant entire function misses at most
one value �as does exp�� Indeed
 suppose g is an entire function and that it is
never zero or one� then exp�����g�z��� is a bounded entire function and is hence
constant�

Littlewood suggested that
 at the right point in history
 the above would
have been a strong candidate for a &one line doctoral thesis��

� Ramanujan�s Solvable Modular Equations

Hardy ���� commenting on Ramanujan�s work on elliptic and modular functions
says

It is here that both the profundity and limitations of Ramanujan�s
knowledge stand out most sharply�
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We present only one of Ramanujan�s modular equations�

Theorem �
�#��q���

#��q�
� � � r

���
� � r

���
� � �����

where for i � � and �

ri ��
�

�
x
�
y 


p
y� � 
x�

�
with

x ��
�#��q��

#��q�
� � and y �� �x� ��� � ��

This slightly rewritten form of entry ���iii� of Chapter �� of Ramanujan�s
Second Notebook �see ���
 where Berndt�s proofs may be studied�� One can think
of Ramanujan�s quintic modular equation as an equation in the multiplier Mp

of ������� The initial surprise is that it is solvable� The quintic modular relation
for �
 W�
 and the related equation for ����� %�
 are both nonsolvable� The
Galois group of the sixth�degree equation %� �see ������� over Q�v� is A� and is
nonsolvable� Indeed both Hermite and Kronecker showed
 in the middle of the
last century
 that the solution of a general quintic may be e�ected in terms of
the solution of the �th�order modular equation ������ and the roots may thus
be given in terms of the theta functions�

In fact
 in general
 the Galois group for Wp of ������ has order p�p����p���
and is never solvable for p � �� The group is quite easy to compute
 it is
generated by two permutations� If

q �� ei�t� then 
 
 
 � � and 
 
 


��
 � ��

are both elements of the ��group and induce permutations on the �i of Theorem
�� For any �xed p
 one can use the q�expansion of ����	� to compute the e�ect
of these transformations on the �i
 and can thus easily write down the Galois
group� While Wp is not solvable over Q���
 it is solvable over Q��� ���� Note
that �� is a root of Wp� It is of degree p�� becauseWp is irreducible� Thus the
Galois group for Wp over Q��� ��� has order p�p� ��� For p � �� �
 and �� this
gives groups of order �	
 
�
 and ��	
 respectively
 which are obviously solvable
and
 in fact
 for general primes
 the construction always produces a solvable
group�

From ����� and ����	� one sees that Ramanujan�s modular equation can be
rewritten to give �� solvable in terms of �� and �� Thus
 we can hope to �nd
an explicit solvable relation for �p in terms of � and ��� For p � �
 Wp is of
degree 
 and is
 of course
 solvable� For p � �
 Ramanujan again helps us out

by providing a solvable seventh�order modular identity for the closely related
eta function de�ned by

��q� �� q
�

��

�Y
n��

��� q�n��
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The �rst interesting prime for which an explicit solvable form is not known
is the �endecadic� �p � ��� case� We consider only prime values because for
nonprime values the modular equation factors�

This leads to the interesting problem of mechanically constructing these
equations� In principle
 and to some extent in practice
 this is a purely compu�
tational problem� Modular equations can be computed fairly easily from ������
and even more easily in the associated variables u and v� Because one knows
a priori bounds on the size of the �integer� coe�cients of the equations one
can perform these calculations exactly� The coe�cients of the equation
 in the
variables u and v
 grow at most like �n� �See ������ Computing the solvable
forms and the associated computational problems are a little more intricate �
though still in principle entirely mechanical� A word of caution however� in the
variables u and v the endecadic modular equation has largest coe�cient ���
 a
three digit integer� The endecadic modular equation for the intimately related
function J Klein�s absolute invariant� has coe�cients as large as

��	�	��
����������������		���	�����������	������	�� �
���
���������

It is
 therefore
 one thing to solve these equations
 it is entirely another matter
to present them with the economy of Ramanujan�

The paucity of Ramanujan�s background in complex analysis and group the�
ory leaves open to speculation Ramanujan�s methods� The proofs given by
Berndt are di�cult� In the seventh�order case
 Berndt was aided by macsyma

� a sophisticated algebraic manipulation package� Berndt comments after giv�
ing the proof of various seventh�order modular identities�

Of course� the proof that we have given is quite unsatisfactory be�
cause it is a veri�cation that could not have been achieved without
knowledge of the result� Ramanujan obviously possessed a more nat�
ural� transparent� and ingenious proof�

	 Modular Equations and Pi

We wish to connect the modular equations of Theorem � to �� This we
contrive via the function alpha de�ned by�

��r� ��
E��k�

K�k�
� �

��K�k���
� �����

where
k �� k�q� and q �� e��

p
r�

This allows one to rewrite Legendre�s equation ����� in a one�sided form without
the conjugate variable as

�



� K

�p
rE � �

p
r � ��r��K

�
� �����
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We have suppressed
 and will continue to suppress
 the k variable� With �����
and ����� at hand we can write a q�expansion for �
 namely


��r� �

�
� �

p
r


�P
n���

n���q
n�

�P
n���

��q
n�

� �P
n���

qn�
�� � �����

and we can see that as r tends to in�nity q � e��
p
r tends to zero and ��r�

tends to ���� In fact

��r�� �

�
� �

	p
r � �

�



e��

p
r� ���
�

The key now is iteratively to calculate �� This is the content of the next theorem�

Theorem � Let k� �� k�q�� k� �� k�qp� and Mp �� Mp�k�� k�� as in ���
���
Then

��p�r� �
��r�

M�
p

�pr


k��
M�

p

� pk�� �
pk��� k� 'Mp

Mp

�
�

where ' represents the full derivative of Mp with respect to k�� In particular� �
is algebraic for rational arguments�

We know that K�k�� is related via Mp to K�k� and we know that E�k�
is related via di�erentiation to K� �See ����� and �������� Note that q 

qp corresponds to r 
 p�r� Thus from ������ some relation like that of the
above theoremmust exist� The actual derivation requires some careful algebraic
manipulation� �See �����
 where it has also been made entirely explicit for p ��
�� �� 
� �� and �
 and where numerous algebraic values are determined for ��r���
In the case p �� � we can specialize with some considerable knowledge of quintic
modular equations to get�

Theorem � Let s �� ��M��k�� k��� Then

����r� � s���r��pr
�
�s� � ��

�
�
p
s�s� � �s� ��

�
�

This couples with Ramanujan�s quintic modular equation to provide a derivation
of Algorithm ��

Algorithm � results from specializing Theorem � with p �� 
 and coupling it
with a quartic modular equation� The quartic equation in question is just two
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steps of the corresponding quadratic equation which is Legendre�s form of the
arithmetic geometric mean iteration 
 namely�

k� �
�
p
k

� � k
�

An algebraic p�th order algorithm for � is derived from coupling Theorem �
with a pth�order modular equation� The substantial details which are skirted
here are available in �����


 Ramanujan�s sum

This amazing sum


�

�
�

p
�

��	�

�X
n��

�
n��

�n���
���	� � ����	n�

����n

is a specialization �N � ��� of the following result
 which gives reciprocal series
for � in terms of our function alpha and related modular quantities�

Theorem �

�

�
�

�X
n��

�
�
�

�
n

�
�
�

�
n

�
�
�

�
n
dn�N�

�n���
x�n��
N � �����

where�

xN ��

kN �k�N�

�

�� � k�N ��
��

	
g��N � g���

N

�


�

�

with

dn�N� �



��N�x��

N

� � k�N
�
p
N



g���
N

�
� n

p
N

	
g��N � g���

N

�




and

kN �� k�e��
p
N �� g��N � �k�N�

����kN��

Here cn is the rising factorial� cn �� c�c� ���c� �� � � � �c� n � ���

Some of the ingredients for the proof of Theorem �
 which are detailed in
����
 are the following� Our �rst step is to write ����� as a sum after replacing
the E by K and dK�dk using ������ One then uses an identity of Clausen�s
which allows one to write the square of a hypergeometric function �F� in terms
of a generalized hypergeometric �F�
 namely
 for all k one has
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�� � k��

�
�K�k�

�

��
� �F�

�
�



�
�



�
�

�
� �� ��

	
�

g�� � g���


�
�

�
�X
n��

�
�
�

�
n

�
�
�

�
n

�
�
�

�
n

���n���n

�
�

g���g���

��
n

n�
�

Here g is related to k by


k�k���

�� � k���
�

	
g�� � g���

�


��

as required in Theorem �� We have actually done more than just use Clausen�s
identity
 we have also transformed it once using a standard hypergeometric
substitution due to Kummer� Incidentally
 Clausen was a nineteenth�century
mathematician who
 among other things
 computed ��	 digits of � in ��
�
using Machin�s formula� The desired formula ����� is obtained on combining
these pieces�

Even with Theorem �
 our work is not complete� We still have to compute

k�� �� k�e��
p
��� and ��� �� ������

In fact

g��� �

�p
�� � �

�

�

is a well known invariant related to the fundamental solution to Pell�s equation
for �� and it turns out that

��� �

�p
�� � �

�

�	

���
p
��� 


����

p
�� �	� ��

p
������

One can
 in principle
 and for N �� ��
 probably in practice
 solve for kN by
directly solving the Nth�order equation

WN �k�N � � � k�N � � 	�

For N � �� given that Ramanujan ���� and Weber ���� have calculated g��
for us
 veri�cation by this method is somewhat easier though it still requires
a tractable form of W��� Actually
 more sophisticated number�theoretic tech�
niques exist for computing kN �these numbers are called singular moduli�� A
description of such techniques
 including a reconstruction of how Ramanujan
might have computed the various singular moduli he presents in ���� is pre�
sented by Watson in a long series of papers commencing with ����� and some
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more recent derivations are given in ���� and ��	�� An inspection of Theorem
� shows that all constants in Series � are determined from g��� Knowing � is
equivalent to determining that the number ��	� is correct�

It is less clear how one explicitly calculates ��� in algebraic form
 except
by brute force
 and a considerable amount of brute force is required� but a
numerical calculation to any reasonable accuracy is easily obtained from �����
and ��	� appears� The reader is encouraged to try this to
 say
 �� digits� This
presumably is what Ramanujan observed� Ironically
 when Gosper computed
�� million digits of � using Sum �
 he had no mathematical proof that Sum �
actually converged to ���� He compared ten million digits of the calculation to
a previous calculation of Kanada et al� This veri�cation that Sum � is correct to
ten million places also provided the �rst complete proof that ��� is as advertised
above� A nice touch � that the calculation of the sum should prove itself as it
goes�

Roughly this works as follows� One knows enough about the exact algebraic
nature of the components of dn�N� and xN to know that if the purported sum
�of positive terms� were incorrect
 then before one reached � million digits

this sum must have ceased to agree with ���� Notice that the components of
Sum � are related to the solution of an equation of degree ��
 but virtually no
irrationality remains in the �nal packaging� Once again
 there are very good
number�theoretic reasons
 presumably unknown to Ramanujan
 why this must
be so ��� is at least a good candidate number for such a reduction�� Ramanujan�s
insight into this marvelous simpli�cation remains obscure�

Ramanujan ���� gives �
 other series for ���
 some others almost as spectac�
ular as Sum � � and one can indeed derive some even more spectacular related
series�

�

He almost gives no explanation as to their genesis
 saying only that there are
�corresponding theories� so the standard theory �as sketched in section �� from
which they follow� Hardy
 quoting Mordell
 observed that �it is unfortunate
that Ramanujan has not developed the corresponding theories�� By methods
analogous to those used above
 all his series can be derived from the classical
theory ����� Again it is unclear what passage Ramanujan took to them
 but it
must in some part have diverged from ours�

We conclude by writing down another extraordinary series of Ramanujan�s

which also derives from the same general body of theory�

�

�
�

�X
n��

	
�n
n


�

�n� �

���n��
�

This series is composed of fractions whose numerators grow like �	n and whose
denominators are exactly �� � ���n� In particular this can be used to calculate

�� Added in proof� Many related series due to Borwein and Borwein and to Chudnovsky
and Chudnovsky appear in papers in Ramanujan Revisited� Academic Press� �����
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the second block of n binary digits of � without calculating the �rst n binary
digits� This beautiful observation
 due to Holloway
 results
 disappointingly
 in
no intrinsic reduction in complexity�

� Sources

References ���
 ����
 ����
 ����
 ����
 and ���� relate directly to Ramanujan�s work�
References ���
 ���
 ���
 ��	�
 ����
 ����
 ��
�
 ����
 ����
 and ���� discuss the com�
putational concerns of the paper�

Material on modular functions and special functions may be pursued in ���

���
 ���
 ��
�
 ����
 ����
 ��	�
 ����
 ��
�
 ����
 and ����� Some of the number�theoretic
concerns are touched on in ���
 ���
 ���
 ����
 ����
 ����
 and �����

Finally
 details of all derivations are given in �����
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